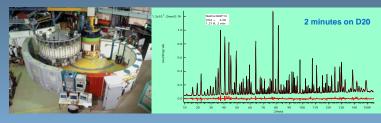


2D Detectors Reactors & Pulsed Sources

A.W.Hewat, NeutronOptics Grenoble

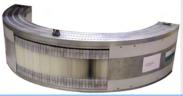


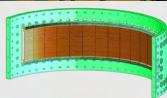
When time-average flux is more important than peak flux

- Efficiency for a given resolution Time-average sample flux Sample volume
- x Detector solid angle

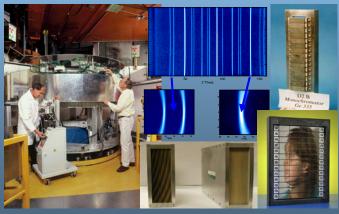
	D20 (ILL)	GEM (ISIS
Flux	5x10 ⁷	2x10 ⁶
Detector	0.27 sr	4.0 sr
Product	1.7	1.0

A medium flux TOF source like ISIS only competes by using big 2D detectors. What about a high flux source like ILL?


While waiting for ESS - How can ILL best compete with SNS?


- Not TOF except in special cases
- TOF depends on peak flux & rep. rate
- lacktriangle Focussing continuous flux with large $\Delta\lambda/\lambda$ lacktriangle c.f. focussing pulsed flux with large $\Delta\lambda/\lambda$

High flux 2D-detectors for single crystals, fibres & powders



- VIVALDI a white beam up to 109 n.cm⁻².s⁻¹
- D19 a large 2D PSD for fibres & proteins
- CYCLOPS a real-time 4π CCD detector
- **Radial Collimators and Big Detectors**

High flux 2D-detectors for powder instruments

- DRACULA on H9 Horizontal beam from Lo
- D2B a big high resolution 2D detector
- Big monochromators and collimators too
- DRACULA a very fast powder machine
- Chemical kinetics, small samples, texture...