The Millennium Programme at ILL

-> New Neutron Detectors

New Diffraction Group Instruments:

- D20 - microstrip powder diffractometer for chemical kinetics...
- D2b - high resolution powder diffractometer with linear PSDs
- D4c - microstrip detector for liquids & amorphous materials
- Strain Scanner - for mapping strain using microstrip detectors
- D19 - an array of 2D-microstrips for protein/fiber diffraction
- T-LADI - Laue Diffractometer & neutron Image plate detector
- D3c - He3 neutron spin filters and magnetic polarimetry
High pressure (15 bar) is needed for high efficiency at the short wavelengths needed for liquids diffraction.

The prototype D4C detector
An array of Microstrip Detectors

New D4C Liquids & Amorphous Materials Diffractometer
Henry Fischer, Gabriel Cuello, Pierre Palleau

Very high efficiency & stability needed for isotope replacement method
A 2D Microstrip Detector

D9, D10, D15, Neutron Strain Scanner...

Bruno Guerard, Anton Oed et al.

A printed circuit on BOTH sides of the glass substrate

A. Hewat, China Nov/Dec 2000
Neutron Strain Scanner

80x80 mm 2D Microstrip Detector on D1A
Thilo Pirling, Robert Wimpory

The 2D microstrip detector is used to obtain the complete line profile all at once

A. Hewat, China Nov/Dec 2000
A large convergent collimator is used with the 2D microstrip detector. Note the very small sampling volume with this setup (right).
The stress distribution in critical regions of this experimental crankshaft from Volkswagen was determined on the strain scanner at ILL.

ILL is part of the EU-RESTAND project with Volkswagen, Rolls-Royce, Airbus etc.

A. Hewat, China Nov/Dec 2000
A New ILL-EPSRC Strain Scanner
EPSRC grant of ~ 1M Pounds Sterling

Philip Withers (Manchester) et al., Thilo Pirling (ILL)

Artists impression of the new ILL-EPSRC strain scanner behind D1A/D1B

A. Hewat, China Nov/Dec 2000
An Array of 2D Microstrip Detectors
D19 Fibre & Protein Diffractometer

Sax Mason, Trevor Forsyth, John Archer, Michael Walsh

200x200 mm 2D microstrip detector for D19 fibre & protein diffractometer

A. Hewat, China Nov/Dec 2000
An Array of 2D Microstrip Detectors
D19 Fibre & Protein Diffractometer

Sax Mason, Trevor Forsyth, John Archer, Michael Walsh

- 15 year old D19 detector covers only a thin 2D strip
- Replace with an array of high resolution 2D modules
- Increase efficiency x20
- Fibre Diffraction
 Small protein structures
 In-situ hydration studies.

9 Independent 2D microstrip detectors
Water in B-DNA sheets on D19

J. Appl. Cryst. 31, 758

(a) with H₂O (b) with D₂O
Water in A-DNA Fibres on D19

- B-DNA sheets, but A-DNA fibres
- 100 individual DNA fibres in D$_2$O
- Diffuse fibre diffraction patterns from D19 used to locate water
- 4 distinct water sites located along double helix backbone
 1) Bridging phosphate groups
 2) Center of opening of major groove
 3) Deep inside the major groove
 4) Disordered string along helix axis
Why can't we do it with X-rays?

Density of water in co-enzyme B12

D19 Neutron data

Synchrotron data
Microstrip Detectors vs Neutron Image Plates

Nature (1997) Cover showing LADI data (LAue Diffractometer with Image plates)

A. Hewat, China Nov/Dec 2000
T-LADI Laue Neutron Image Plate for physics and chemistry
Dean Myles, Clive Wilkinson, Garry McIntyre

- Thermal neutron guide
- Band of neutron energies
- View reciprocal space
- In-situ laser readout
- Unique survey of P/T
- Phase T/Ns, superstruct.

Dean Myles with LADI and cryo-refrigerator on thermal guide H22

A. Hewat, China Nov/Dec 2000
T-LADI Neutron Image Plate for physics and chemistry
Dean Myles, Clive Wilkinson, Garry McIntyre

1. Image plate on rotating drum
3. Sample holder
7. He-Ne laser
9. Reader head, photomultiplier

Phonograph readout time 4 min.
4000x2000 pixels of 200 μm

Original LADI (used for biological structures) adapted for materials research

A. Hewat, China Nov/Dec 2000
T-LADI Neutron Image Plate
Superstructure in $\text{La}_2\text{Co}_{1.7}$

$\text{La}_2\text{Co}_{1.7}$ on T-LADI showing incommensurable superstructure
T-LADI Neutron Image Plate
Superstructure in La$_2$Co$_{1.7}$

- 6-domain ring of (122)$^-$ superstructure
T-LADI Neutron Image Plate
5-fold symmetry of quasi-crystal

5-fold symmetry axis in ZnMgY quasi-crystal - De Boissieu et al. (1999)

T-LADI neutron image plate photo courtesy of G. McIntyre, Oct 1999
T-LADI Neutron Image Plate
5-fold symmetry of quasi-crystal

Rocking the ZnMgY quasi-crystal (Dynamics) - McIntyre, Cowan (1999)
T-LADI Neutron Image Plate
Why Image-plates + Microstrips?

Disadvantages of Image-plates

- Photographic technique
- Accumulate background
- Background from all λ (wide $\Delta\lambda$)
- H-background

For X-rays, photographic techniques are now replaced by electronic PSD’s

New T-LADI uses thermal neutrons, more efficient interior read-out optics, vertical geometry allowing use of cryostats, furnaces, magnets, pressure cells

A. Hewat, China Nov/Dec 2000
Polarized Neutrons & He3 Filters

Francis Tasset, Eddy Lelievre, Adrin Hiller, Trefor Roberts

Jane Brown with magnet on D3

A. Hewat, China Nov/Dec 2000
Polarized Neutrons & He3 Filters

Francis Tasset, Eddy Lelievre, Adrin Hiller, Trefor Roberts

New 10 Tesla cryo-magnet with lifting counter on D3

A. Hewat, China Nov/Dec 2000
D3 Polarized Neutron Diffractometer

Francis Tasset, Eddy Lelievre, Adrin Hiller, Trefor Roberts
Polarized Neutrons & He3 Filters

Francis Tasset, Eddy Lelievre, Adrin Hiller, Trefor Roberts

Proposed new cryopad setup on D3C
The Millennium Programme at ILL
-> New Neutron Detectors

New Diffraction Group Instruments:

- D20 - microstrip powder diffractometer for chemical kinetics...
- D2b - high resolution powder diffractometer with linear PSDs
- D4c - microstrip detector for liquids & amorphous materials
- Strain Scanner - for mapping strain using microstrip detectors
- D19 - an array of 2D-microstrips for protein/fiber diffraction
- T-LADI - Laue Diffractometer & neutron Image plate detector
- D3c - He3 neutron spin filters and magnetic polarimetry