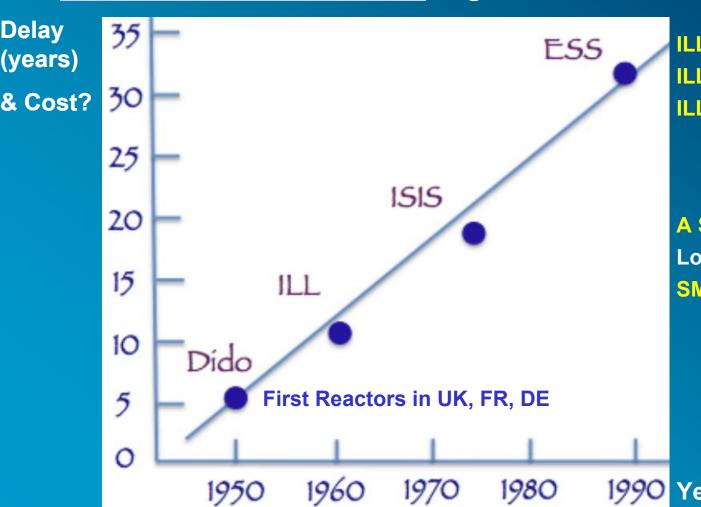


Alan Hewat, ILL and NeutronOptics Grenoble



Alan Hewat, ILL and NeutronOptics Grenoble

Neutron Sources - the Time it Takes & the Cost

K Andersen & C Carlile 2016 – Egelstaff's Rule of Increasing Delay

ILL Intensity Dido ~ x 10 ILL Construction ~ 2 years ILL Cost (€ 2023) ~ 320 M€

A Small Modular Reactor Location near a city **SMAs the Future?**

Year

Alan Hewat, ILL and NeutronOptics Grenoble

What's left for the UK Contribution – in 10 minutes?

1972 – I was working at Harwell – with Joe Zaccai (the next speaker)

ILL Director Mossbauer visits – Wants to change the ILL's emphasis

Unique in the World → Useful for University Users

The UK had the world's first Neutron User system (after Australia)

The UK Contribution was the University User system

User demand -> better instruments (x100 to x1000 efficiency c.f. x10 source intensity)

Huge increase in scientific output → User System copied by all neutron labs.

Increased budget for instrument improvement – "2nd Souffle" J White, B Fender

Instrument Improvement more Important than Source Flux

Alan Hewat, ILL and NeutronOptics Grenoble

My First ILL Job - D2B - Mission Impossible

1973 – I was recruited to ILL from Harwell (UK Director - Mick Lomer from Harwell)

My job was to build a new high resolution diffractometer D2B (Brian Fender)

But soon after I arrived - a meeting of the ILL Science Council

Abragam Asked for the price of the six hexapole sections

for the spin echo spectrometer

Mössbauer Gave a figure of 1.6 million...

Bertaut Asked for explanations of the plans for D2B

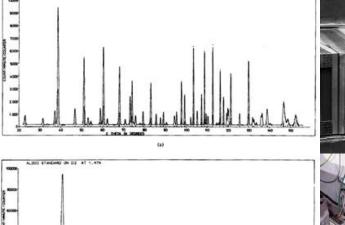
Lomer The proposed D2B plan... would be "very difficult"...

"For the time being" the idea should be abandoned...

Mössbauer Reported on ultra-cold neutrons... quoted some examples...

D2B was NOT to be

Alan Hewat, ILL and NeutronOptics Grenoble



My First ILL Job – L'Impossible n'est pas Française

x500 intensity gain with lan Bailey (1975)

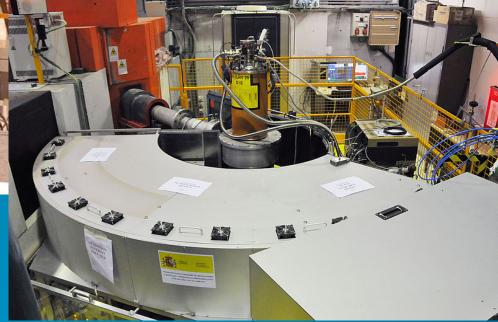
- ILL Focussing Monochromators x5 (Andreas Freund)
- Rutherford Lab Mylar Collimators x4x25 (Colin Carlile)

Original D1A detector (1973)

- Report: Hans Dachs & B Forsyth
- Very high resolution
- Very low intensity Unusable
- My first ILL job Make it work (3 year contract)

Alan Hewat, ILL and NeutronOptics Grenoble

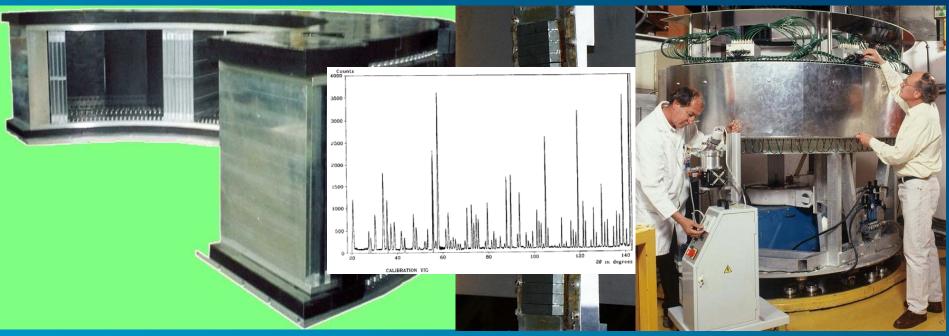
x1000 gains in instrument performance to satisfy users


The CEA/LETI development of Position sensitive Neutron Detectors

New He3 D1B (Convert, MICINN) x100 intensity gain

Original D1B detector (1973)

CEA PSDs E Roudaut, R Allemand, J Jacobe Pierre Convert (1970) ILL BF3 "banana"



Alan Hewat, ILL and NeutronOptics Grenoble

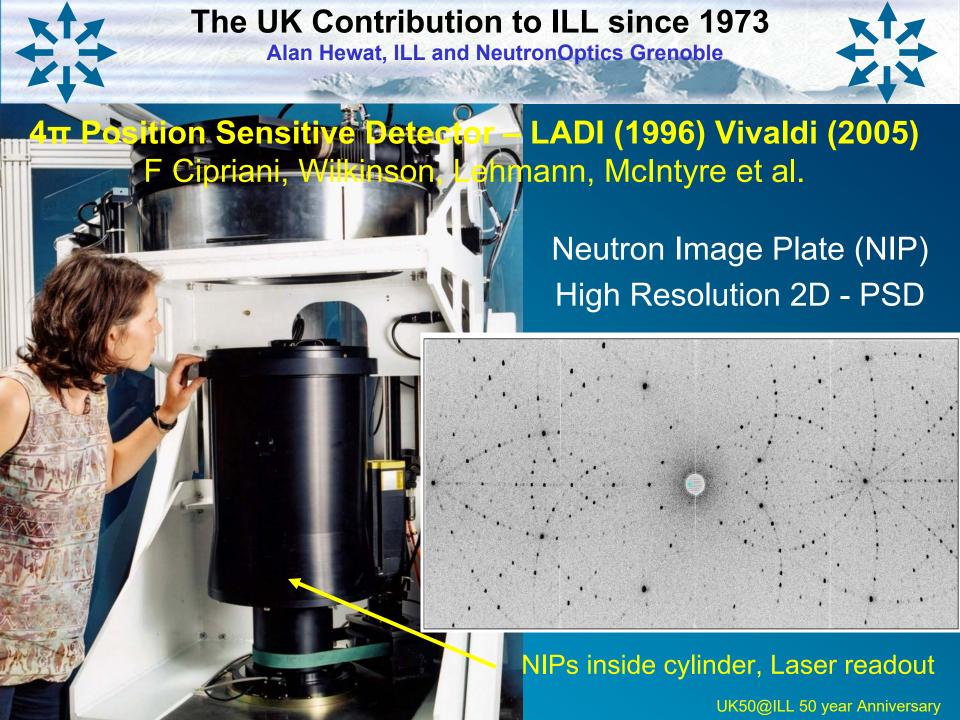
ILL 2nd Souffle – First UK Director, John White

D2B 1980 + 2003 Paul Attfield EPSRC grant - 128 Mylar Collimators, He3 Linear PSDs

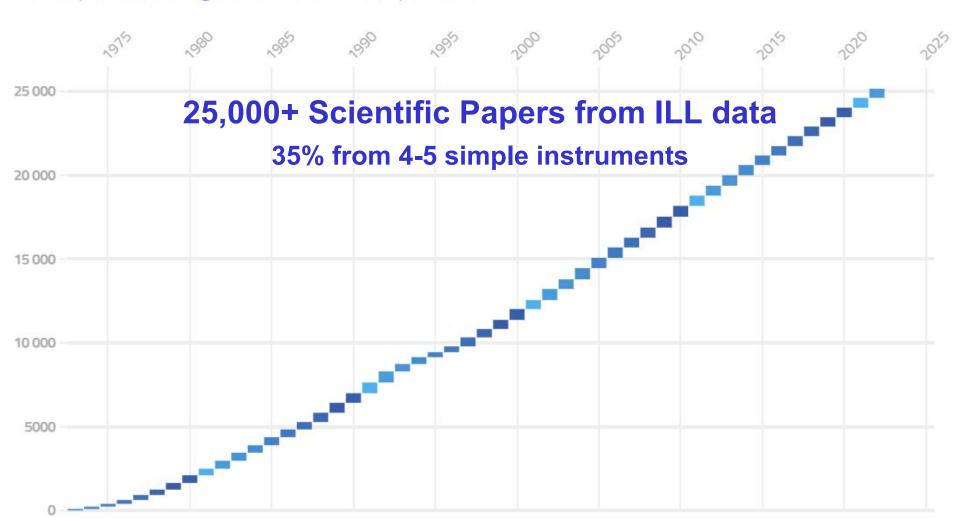
X128 EuroCollimators (UK) + He3 Detectors + Focusing Monochromator

Peter Cross, Alan Hewat on D2B

Brian Fender 1973 project, delayed 7 years by "budget priorities",



Alan Hewat, ILL and NeutronOptics Grenoble



Alan Hewat, ILL and NeutronOptics Grenoble

Cumulative number of scientific publications at the ILL

25 159 publications registered in the ILL library since 1973

Alan Hewat, ILL and NeutronOptics Grenoble ▲ ILL Impact - Most Cited ILL Papers (Fischer & Rodriguez)

Instrument	Pubs			100+Cites	Note	Instrument	Pubs		100+Cites		Note
	2007-'16	2007-'16	2007-'16	to 2016			2007-'16	2007-'16	2007-'16	to 2016	
DIFFRACTION						INELASTIC			_		
D1A powder	266	3207	3	28	Closed	BRISP TOFSANS	25	<u>203</u>	0	0	Closed
D1B powder	476	4202	6	39	CRG	IN4 Thermal TOF	135	<u>1721</u>	2	8	Closed
D2B powder	543	7262	6	58		IN5 TOF	194	3005	1	21	
D20 powder	383	4801	3	24		IN6 SHARP TOF	226	<u>3850</u>	5	40	CRG
XtremeD pressure					New CRG	IN10 TOF	78	<u>971</u>	0	16	Closed
SALSA strain	160	1198	0	0		IN13 TOF	124	1780	2	18	CRG
D4 Lig/Amor	129	1804	1	34	50%	IN16B TOF	150	2242	2	8	
D3 Hot polar	50	437	0	4		IN11 SpinEcho	64	992	1	14	
D7 Cold Diffuse	62	1035	2	4		IN15 SpinEcho	73	1325	1	3	
D9 Hot Single-X	52	476	0	10		WASP SpinEcho					New
D10 Single-X	67	1150	2	12		IN3 3-axis Test	28	<u>235</u>	0	2	Test
D19 Single-X	64	967	1	12		IN1/Lagrange 3Ax	54	467	0	5	50%
D23 Single-X	59	865	0	2	CRG	IN8 3-Axis	86	1944	4	18	
VIVALDI	59	717	1	2	Closed	IN12 3-Axis	69	1275	2	11	
OE+CYCLOPS					New Test	IN20 3-Axis	74	1290	1	12	
DIFFRACT total	23T0	28121	25	229		IN22 3-Axis	66	1142	0	3	CRG 🕟
More Citations for Simple Instruments											

More Citations for Simple Instruments **Unexpected?**

						INELASTIC total	1516	24010	24	189	
LS STRUCTURE											
D11 SANS	357	<u>6371</u>	6	71		NUCLEAR PP					
D22 SANS	351	5678	2	20		PF1 Cold Polar	91	<u>916</u>	1	4	
D33 SANS	32	218	0	0	60%	PF2 UCN	90	1098	1	2	
D16 Cold LSS	84	1059	0	12		SuperSUN UCN					Test
LADI(-I,-III) Laue	57	<u>908</u>	0	1		PN1/Lohengrin	75	<u>604</u>	0	1	
DALI Cold Laue					New	PN2					Closed
D17 Reflect	142	<u>1506</u>	0	33		PN3/GAMS	17	<u>214</u>	1	4	
FIGARO Reflect	81	<u>780</u>	0	0	60%	<u>FIPPS</u>					New
ADAM Reflect	67	603	0		CRG	S18 Interferometer	49	<u>483</u>	1	3	CRG
NeXT imaging				New	CRG	GRANIT Gravity	34	<u>326</u>	0	0	80%
LSS total	1171	17123	8	137		NPP total	356	3641	4	14	
						ILL total	5393	72813	61	569	

Alan Hewat, ILL and NeutronOptics Grenoble

Only 4 out of 25,000+ ILL Papers with >1000 Citations All on Simple Instruments

D19 - Sax Mason, Judith Howard (EPSRC grant) D11 - Peter Timmins (2nd Souffle)

- D19 Crystal Structure & Hydrogen-Bonding in Cellulose... Fibres
 Yoshiharu Nishiyama, Paul Langan, and Henri Chanzy
 (2002) J. Am. Chem. Soc. 124, 9074–9082
- D11 Phase Diagrams & Aggregation Behavior of... Triblock Copolymers..
 G. Wanka, H. Hoffmann, and W. Ulbricht
 (1994) Macromolecules 27, 4145–4159
- D2B Lattice Effects on the Magnetoresistance in Doped LaMnO3
 H.Y. Hwang, S-W. Cheong, P.G. Radaelli, M. Marezio, and B. Batlogg
 (1995) Phys. Rev. Lett. 75, 914
- D2B Structural anomalies, Oxygen & Superconductivity in... Ba2YCu3Ox R.J. Cava, A. Hewat, E. Hewat, B. Batlogg, M. Marezio... (1990) Physica C: Superconductivity 165, 419-433

Alan Hewat, ILL and NeutronOptics Grenoble

The UK Contribution was the University User system

User Demand → Instrument Investment

Instrument Investment >> Source Flux

Simple Instruments → Most Papers & Citations